Periodic Table

Below is information to help you with the Webquest.....but you can also go to this website for more information:
dance.gif121709_100324_2.png
Should space aliens visit earth, I suggest communications begin with a blank periodic table--anyone capable of space travel would surely recognize the unique shape. So what's the origin of this universally recognized shape or did Mendeleev (father of the periodic table) come down a mountain carrying the famous outline carved in rectangular stone?
The quest for a systematic arrangement of the elements started with the discovery of individual elements (see Discovery of Elements).  By 1860 about 60 elements were known and a method was needed for organization.  In fact many scientists made significant contributions that eventually enabled Mendeleev to construct his table. The periodic table did not end with Mendeleev but continued to take shape for the next 75 years.
 121709_100143_0.png
  
  triads.gif
The development of the periodic table begins with German chemist Johann Dobereiner (1780-1849) who  grouped elements based on similarities.  Calcium (atomic weight 40), strontium (atomic weight 88), and barium (atomic weight 137) possess similar chemical prepares.  Dobereiner noticed the atomic weight of strontium fell midway between the weights of calcium and barium:
     Ca     Sr      Ba       (40 + 137) ÷ 2 = 88
     40     88     137
Was this merely a coincidence or did some pattern to the arrangement of the elements exist? Dobereiner  noticed the same pattern for the alkali metal triad (Li/Na/K) and the halogen triad (Cl/Br/I).
     Li     Na     K             Cl    Br   I
     7     23     39           35    80   127
In 1829 Dobereiner proposed the Law of Triads: Middle element in the triad had atomic weight that was the average of the other two members. Soon other scientists found chemical relationships extended beyond triads. Fluorine was added to Cl/Br/I group; sulfur, oxygen, selenium and tellurium were grouped into a family; nitrogen, phosphorus, arsenic, antimony, and bismuth were classified as another group.
First Periodic Table 
It was a 19th century geologist who first recognized periodicity in the physical properties of the elements. Alexandre Beguyer de Chancourtois (1820-1886), professor of geology at the School of Mines in Paris, published in 1862 a list of all the known elements. The list was constructed as a helical graph wrapped around a cylinder--elements with similar properties occupied positions on the same vertical line of cylinder (the list also included some ions and compounds).†† Using geological terms and published without the diagram, de Chancourtois ideas were completely ignored until the work of Mendeleev.
  Law of Octaves  trebblew.gifpiano2.gif bass.gif
newland.gif
English chemist John Newlands (1837-1898), having arranged the 62 known elements in order of increasing atomic weights, noted that after interval of eight elements similar physical/chemical properties reappeared.† Newlands was the first to formulate the concept of periodicity in the properties of the chemical elements. In 1863 he wrote a paper proposing the Law of Octaves: Elements exhibit similar behavior to the eighth element following it in the table.
    ptnewld.gif
Mendeleev's Periodic Table 
Then in 1869, Russian chemist Dimitri Mendeleev (1834-1907) proposed arranging elements by atomic weights and properties (Lothar Meyer independently reached similar conclusion but published results after Mendeleev).† Mendeleev's periodic table of 1869 contained 17 columns with two partial periods of seven elements each (Li-F & Na-Cl) followed by two nearly complete periods (K-Br & Rb-I).
In 1871 Mendeleev revised the 17-group table with eight columns (the eighth group consisted of transition elements). This table exhibited similarities not only in small units such as the triads, but showed similarities in an entire network of vertical, horizontal, and diagonal relationships. The table contained gaps but Mendeleev predicted the discovery of new elements.† In 1906, Mendeleev came within one vote of receiving the Nobel Prize in chemistry.     
pt1871.gif
Discovery of the Noble Gases
Lord Rayleigh (1842-1919) and William Ramsey (1852-1916) greatly enhanced the periodic table by† discovering the "inert gases."† In 1895 Rayleigh reported the discovery of a new gaseous element named argon. This element was chemically inert and did not fit any of the known periodic groups. Ramsey followed by discovering the remainder of the inert gases and positioning them in the periodic table. So by 1900, the periodic table was taking shape with elements were arranged by atomic weight.† For example, 16g oxygen reacts with 40g calcium, 88g strontium, or 137g barium. If oxygen used as the reference, then Ca/Sr/Ba assigned atomic weights of 40, 88, and 137 respectively.
Rayleigh (physics) and Ramsey (chemistry) were awarded Nobel prizes in 1904.† The first inert gas compound was made in 1962 (xenon tetrafluoride) and numerous compounds have followed (see xenon compounds)--today the group is more appropriately called the noble gases.
Moseley's Periodic Law 
        xdata.gif
Soon after Rutherford's landmark experiment of discovering the proton in 1911, Henry Moseley (1887-1915) subjected known elements to x-rays. He was able to derive the relationship between x-ray frequency and number of protons. When Moseley arranged the elements according to increasing atomic numbers and not atomic masses, some of the inconsistencies associated with Mendeleev's table were eliminated. The modern periodic table is based on Moseley's Periodic Law (atomic numbers). At age 28, Moseley was killed in action during World War I and as a direct result Britain adopted the policy of exempting scientists from fighting in wars.† Shown below is a periodic table from 1930:   
 pt1930.gif
Modern Periodic Table 
The last major change to the periodic table resulted from Glenn Seaborg's work in the middle of the 20th century. Starting with plutonium in 1940, Seaborg discovered transuranium elements 94 to 102 and reconfigured the periodic table by placing the lanthanide/actinide series at the bottom of the table. In 1951 Seaborg was awarded the Nobel Prize in chemistry and element 106 was later named seaborgium (Sg) in his honor.  
seaborg0-014.jpg Glenn Seaborg
  
PTwide.jpg
      121809_90026_1.png 
 Seaborg Reconfigured the table and placed the F block elements below.
periodictable.png
Link to the above table.
The above page  is adapted from Dr. Edwin Thall: http://mooni.fccj.org/~ethall/